On the compression of aluminium foam structures under shock

Abstract

Foam-based materials have an important role as both blast and impact mitigators, with their extended sub-surface structures providing multiple redundant routes for load management and distribution in the event of failure. In order to further elucidate underlying stress management mechanisms at high strain-rates, here, open cell and closed cell Aluminium were investigated via the plate-impact technique. These experiments allowed the material to be loaded under a macroscale one-dimensional state of strain. The nature of pore collapse was monitored via manganin stress gauges at the target rear surface, with resultant data related back to changes in microstructure via microstructural analysis of both un-impacted and recovered target material. Results indicated crushing of the open cell foam occurred without retarding the flyer plate and the observed shock pressures suggested the degree of compaction increased with impact velocity. The higher density closed cell foam caused significant deceleration of the flyer plate during passage through the specimen and significantly lower shock pressures were observed at the anvil compared to the open cell material.<br/

Similar works

Full text

thumbnail-image

The University of Manchester - Institutional Repository

redirect
Last time updated on 01/02/2017

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.