The motivation to our studies came from simulation of earth-quakes, that are modeled with elastic wave equations. In our paper we focus on the study of the stiff problems for the wave-equations. Due to this contribution we discuss iterative operator splitting methods for wave-equations motivated from a realistic problem in seismic sources and waves. The operator-splitting methods are wel-know to solve such complicated multidimensional and multi physics problems. We present the consistency analysis for the iterative methods as theoretical background for the wave-equation with respect to the underlying boundary conditions. From the algorithmic point of view we discuss the application of the decoupling and non-decoupling the equations, with respect to the eigenvalues. We verify our methods for test problems with known analytical solutions. Multi-dimensional examples are presented for realistic applications in wave equations. Finally we discuss the results.repor
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.