Linear and nonlinear resonant interaction of sound waves in dissipative layers

Abstract

The theory of resonant nonlinear magnetohydrodynamic (MHD) waves in dissipative steady plasmas developed by Ballai and Erdélyi is used to study the effect of steady flows on nonlinear resonant heating of MHD waves in (a) linear, (b) weakly and (c) strongly nonlinear approximations. Nonlinear connection formulae for slow MHD waves are derived. This nonlinear theory of driven MHD waves is then used to study the interaction of sound waves with one-dimensional isotropic steady plasmas. We find that a steady equilibrium flow can significantly influence the efficiency of resonant absorption in the considered limits. In the case of strong nonlinearity, the efficiency of the resonant coupling is found to be proportional to the counterpart obtained in linear theory. The factor of proportion is approximately of the order of unity, justifying the commonly applied linear approximations

    Similar works

    This paper was published in White Rose Research Online.

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.