journal articleresearch article

The antibacterial activity of biogenic silver and its mode of action

Abstract

In a previous study, biogenic silver nanoparticles were produced by Lactobacillus fermentum which served as a matrix preventing aggregation. In this study the antibacterial activity of this biogenic silver was compared to ionic silver and chemically produced nanosilver. The minimal inhibitory concentration (MIC) was tested on Gram-positive and Gram-negative bacteria and was comparable for biogenic silver and ionic silver ranging from 12.5 to 50 mg/L. In contrast, chemically produced nanosilver had a much higher MIC of at least 500 mg/L, due to aggregation upon application. The minimal bactericidal concentration (MBC) in drinking water varied from 0.1 to 0.5 mg/L for biogenic silver and ionic silver, but for chemically produced nanosilver concentrations, up to 12.5 mg/L was needed. The presence of salts and organic matter decreased the antimicrobial activity of all types of silver resulting in a higher MBC and a slower inactivation of the bacteria. The mode of action of biogenic silver was mainly attributed to the release of silver ions due to the high concentration of free silver ions measured and the resemblance in performance between biogenic silver and ionic silver. Radical formation by biogenic silver and direct contact were found to contribute little to the antibacterial activity. In conclusion, biogenic nanosilver exhibited equal antimicrobial activity compared to ionic silver and can be a valuable alternative for chemically produced nanosilver

Similar works

Full text

thumbnail-image

Ghent University Academic Bibliography

redirect
Last time updated on 12/11/2016

This paper was published in Ghent University Academic Bibliography.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.