journal articleresearch article

Three-dimensional dust radiative transfer

Abstract

Cosmic dust is present in many astrophysical objects, and recent observations across the electromagnetic spectrum show that the dust distribution is often strongly three-dimensional (3D). Dust grains are effective in absorbing and scattering ultraviolet (UV)/optical radiation, and they re-emit the absorbed energy at infrared wavelengths. Understanding the intrinsic properties of these objects, including the dust itself, therefore requires 3D dust radiative transfer (RT) calculations. Unfortunately, the 3D dust RT problem is nonlocal and nonlinear, which makes it one of the hardest challenges in computational astrophysics. Nevertheless, significant progress has been made in the past decade, with an increasing number of codes capable of dealing with the complete 3D dust RT problem. We discuss the complexity of this problem, the two most successful solution techniques [ray-tracing (RayT) and Monte Carlo (MC)], and the state of the art in modeling observational data using 3D dust RT codes. We end with an outlook on the bright future of this field

Similar works

Full text

thumbnail-image

Ghent University Academic Bibliography

redirect
Last time updated on 12/11/2016

This paper was published in Ghent University Academic Bibliography.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.