research article journal article

Molecular dynamics kinetic study on the zeolite-catalyzed benzene methylation in ZSM-5

Abstract

The methylation of arenes is a key step in the production of hydrocarbons from methanol over acidic zeolites. We performed ab initio static and molecular dynamics free energy simulations of benzene methylation in H-ZSM-S to determine the factors that influence the reaction kinetics. Special emphasis is given to the effect of the surrounding methanol molecules on the methylation kinetics. It is found that for higher methanol loadings, methylation may also occur from a protonated methanol cluster, indicating that the exact location of the Bronsted acid site is not essential for the zeolite-catalyzed methylation reaction. However, methylations from a protonated methanol cluster exhibit higher free energy barriers than a methylation from a single methanol molecule. Finally, comparison with a pure methanol solvent reaction environment indicates that the main role of the zeolite during the methylation of benzene is to provide the acidic proton and to create a polar environment for the reaction. The metadynamics approach, which is specifically designed to sample rare events, allows exploring new reaction pathways, which take into account the flexibility of the framework and additional guest molecules in the pores and channels of the zeol

Similar works

Full text

thumbnail-image

Ghent University Academic Bibliography

redirect
Last time updated on 12/11/2016

This paper was published in Ghent University Academic Bibliography.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.