Analysis of the geomagnetic activity of the D(st) index and self-affine fractals using wavelet transforms

Abstract

The geomagnetic activity of the D(st) index is analyzed using wavelet transforms and it is shown that the D(st) index possesses properties associated with self-affine fractals. For example, the power spectral density obeys a power-law dependence on frequency, and therefore the D(st) index can be viewed as a self-affine fractal dynamic process. In fact, the behaviour of the D(st) index, with a Hurst exponent H≈0.5 (power-law exponent β≈2) at high frequency, is similar to that of Brownian motion. Therefore, the dynamical invariants of the D(st) index may be described by a potential Brownian motion model. Characterization of the geomagnetic activity has been studied by analysing the geomagnetic field using a wavelet covariance technique. The wavelet covariance exponent provides a direct effective measure of the strength of persistence of the D(st) index. One of the advantages of wavelet analysis is that many inherent problems encountered in Fourier transform methods, such as windowing and detrending, are not necessary

    Similar works

    This paper was published in White Rose Research Online.

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.