Physico-chemical properties of PDMS surfaces suitable as substrates for cell cultures

Abstract

Elastic properties of the substrate have profound effect on adhesion and proliferation of cells. Here, we introduce a method to produce polydimethylsiloxane (PDMS) substrates with stiffness tuned monotonically from 1.67 to 0.24 MPa, by the time of UV irradiation adjusted up to 5 h. The Young’s modulus (determined by using nanoindenter) scales linearly with stiffness calculated using AFM-based force spectroscopy data. Such a relation enables the determination of the Young modulus from AFM force – distance curves also when the Herz model is not applicable. Our findings demonstrate that surface properties of PDMS substrates are not affected by the applied methodology of tuning substrate elasticity. Finally, the colorimetric proliferation assay (MTT) carried out for non-malignant (HCV29) and cancerous (T24) bladder cancer cells depicted a significant contribution of PDMS substrate elasticity to the behavior of cells. The softer PDMS substrate demonstrated excellent cytocompatibility whereas the stiff one is more cell-repellent

Similar works

Full text

thumbnail-image

Jagiellonian Univeristy Repository

redirect
Last time updated on 12/11/2016

This paper was published in Jagiellonian Univeristy Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.