Spontaneous and persistent currents in mesoscopic Aharonov-Bohm loops: Static properties and coherent dynamic behavior in crossed electric and magnetic fields
Mesoscopic or macromolecular conducting rings with a fixed number of electrons are shown to support persistent currents due to the Aharonov-Bohm flux, and the "spontaneous" persistent currents without the flux when structural transformation in the ring is blocked by strong coupling to the externally azimuthal-symmetric environment. In the free-standing macromolecular ring, symmetry breaking removes the azimuthal periodicity, which is further restored at the increasing field, however. The dynamics of the Aharonov-Bohm loop in crossed electric and magnetic fields is investigated within the tight-binding approximation; we show that transitions between discrete quantum states occur when static voltage pulses of prescribed duration are applied to the loop. In particular, the three-site ring with one or three electrons is an interesting quantum system that can serve as a qubit (quantum bit of information) and a qugate (quantum logical gate) because in the presence of an externally applied static electric field perpendicular to a magnetic field, the macromolecular ring switches between degenerate ground states mimicking the NOT and Hadamard gates of quantum computers
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.