A Reliable Method of Minimum Zone Evaluation of Cylindricity and Conicity from Coordinate Measurement Data

Abstract

The form error evaluation of cylinders and cones is very important in precision coordinate metrology. The solution of the traditional least squares technique is prone to over-estimation, as a result unnecessary rejections may be caused. This paper proposes a reliable algorithm to calculate the minimum zone form errors of cylinders and cones, called a hybrid particle swarm optimization-differential evolution algorithm. The optimization is conducted in two stages, so that the program can hold a fast convergence rate, while effectively avoiding local minima. Experimental results demonstrate that the proposed algorithm can obtain very accurate and stable results for the calculation of cylindricity and conicity

Similar works

This paper was published in University of Huddersfield Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.