Thermal effects in InGaAs/AlAsSb quantum-cascade lasers

Abstract

A quantum-cascade laser (QCL) thermal model is presented. On the basis of a finite-difference approach, the model is used in conjunction with a self-consistent carrier transport model to calculate the temperature distribution in a near-infrared InGaAs/AlAsSb QCL. The presented model is used to investigate the effects of driving conditions and device geometries on the active-region temperature, which has a major influence on the device performance. A buried heterostructure combined with epilayer-down mounting is found to offer the best performance compared with alternative structures and has thermal time constants up to eight times smaller. The presented model provides a valuable tool for understanding the thermal dynamics inside a QCL and will help to improve operating temperatures

    Similar works

    This paper was published in White Rose Research Online.

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.