Skip to main content
Article thumbnail
Location of Repository

On the infinitesimal generators of Ornstein–Uhlenbeck processes with jumps in Hilbert space \ud

By D. Applebaum


We study Hilbert space valued Ornstein–Uhlenbeck processes (Y(t), t ≥ 0) which arise as weak solutions of stochastic differential equations of the type dY = JY + CdX(t) where J generates a C 0 semigroup in the Hilbert space H, C is a bounded operator and (X(t), t ≥ 0) is an H-valued Lévy process. The associated Markov semigroup is of generalised Mehler type. We discuss an analogue of the Feller property for this semigroup and explicitly compute the action of its generator on a suitable space of twice-differentiable functions. We also compare the properties of the semigroup and its generator with respect to the mixed topology and the topology of uniform convergence on compacta

Publisher: Springer Verlag
Year: 2007
OAI identifier:

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.