Skip to main content
Article thumbnail
Location of Repository

Data Augmentation in the Bayesian Multivariate Probit Model

By R. León-González


This paper is concerned with the Bayesian estimation of a Multivariate Probit model. In particular, this paper provides an algorithm that obtains draws with low correlation much faster than a pure Gibbs sampling algorithm. The algorithm consists in sampling some characteristics of slope and variance parameters marginally on the latent data. Estimations with simulated datasets illustrate that the proposed algorithm can be much faster than a pure Gibbs sampling algorithm. For some datasets, the algorithm is also much faster than the efficient algorithm proposed by Liu and Wu (1999) in the context of the univariate Probit model.\u

Publisher: Department of Economics, University of Sheffield
Year: 2004
OAI identifier:

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.