Skip to main content
Article thumbnail
Location of Repository

Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes

By François Bachoc


Manuscript: 47 pages, supplementary material: 9 pages, accepted for publication in the Journal of multivariate AnalysisCovariance parameter estimation of Gaussian processes is analyzed in an asymptotic framework. The spatial sampling is a randomly perturbed regular grid and its deviation from the perfect regular grid is controlled by a single scalar regularity parameter. Consistency and asymptotic normality are proved for the Maximum Likelihood and Cross Validation estimators of the covariance parameters. The asymptotic covariance matrices of the covariance parameter estimators are deterministic functions of the regularity parameter. By means of an exhaustive study of the asymptotic covariance matrices, it is shown that the estimation is improved when the regular grid is strongly perturbed. Hence, an asymptotic confirmation is given to the commonly admitted fact that using groups of observation points with small spacing is beneficial to covariance function estimation. Finally, the prediction error, using a consistent estimator of the covariance parameters, is analyzed in details

Topics: metamodel, Kriging, covariance parameter estimation, maximum likelihood, leave-one-out, increasing-domain asymptotics, Uncertainty quantification, [ STAT.TH ] Statistics [stat]/Statistics Theory [stat.TH]
Publisher: HAL CCSD
Year: 2013
OAI identifier: oai:HAL:hal-00906934v1
Provided by: Hal-Diderot

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.