Skip to main content
Article thumbnail
Location of Repository

Propriétés de transport et d'anisotropie de jonctions tunnel magnétiques perpendiculaires avec simple ou double barrière

By Léa Cuchet

Abstract

Due to their advantageous properties in terms of data retention, storage density and critical current density for Spin Transfer Torque (STT) switching, the magnetic tunnel junctions with perpendicular anisotropy have become predominant in the developments for MRAM applications. The aim of this thesis is to improve the anisotropy and transport properties of such structures and to realize even more complex stacks such as perpendicular double junctions. Studies on the magnetic properties and Tunnel MagnetoResistance (TMR) measurements showed that to optimize the performances of the junctions, all the thicknesses of the different layers constituting the stack have to be adapted. To guaranty both a large TMR as well a strong perpendicular anisotropy, compromises are most of the time needed. Studies as a function of magnetic thickness enabled to extract the saturation magnetization, the critical thickness and the magnetic dead layer thickness both in the bottom reference and the top storage layer in structures capped with Ta. This type of junction could be tested electrically after patterning the sample into nanopillars. Knowing that perpendicular anisotropy mostly arises at the metal/oxide interface, the Ta capping layer was replaced by a MgO one, leading to a huge increase in the anisotropy of the free layer. A second top reference was then added on such a stack to create functional perpendicular double junctions. CoFeB/insertion/CoFeB synthetic antiferromagnetic storage layers could be developed and were proved to be stable enough to replace the standard Co/Pt-based reference layers.Du fait de leurs propriétés avantageuses en termes de rétention des données, densité de stockage et faible courant critique pour l'écriture par courant polarisé en spin (STT), les jonctions tunnel magnétiques à anisotropie perpendiculaire sont devenues prédominantes dans les études sur les applications aux mémoires magnétiques MRAM. Les travaux de cette thèse s'inscrivent dans ce contexte avec pour but l'amélioration des propriétés de transport et d'anisotropie de telles structures ainsi que la réalisation d'empilements encore plus complexes tels que des doubles jonctions perpendiculaires. Grâce à l'étude des propriétés magnétiques et des mesures de MagnétoRésistance Tunnel (TMR), il apparaît que pour optimiser les performances des jonctions tunnel, l'ensemble des épaisseurs des couches composant l'empilement doit être adapté. Des compromis sont souvent nécessaires pour obtenir à la fois une forte anisotropie perpendiculaire et des signaux de TMR élevés. Des études en fonction des épaisseurs magnétiques ont permis de déterminer les aimantations à saturation, épaisseurs critiques et couches mortes dans les couches de référence et de stockage de jonctions standard avec électrode libre supérieure et couverture Ta. Ce type de jonction a pu être nano-fabriqué sous forme de piliers circulaires afin de tester l'écriture par STT. Sachant que l'anisotropie perpendiculaire provient essentiellement de l'interface métal/oxyde, la couverture Ta a été ensuite remplacée par une deuxième couche de MgO, permettant d'améliorer significativement l'anisotropie de la couche libre. En introduisant une seconde référence au-dessus de cette jonction, des doubles jonctions perpendiculaires fonctionnelles ont pu être fabriquées. Des couches de stockage antiferromagnétiques synthétiques de la forme CoFeB/insert/CoFeB ont pu être développées et apparaissent suffisamment stables pour pouvoir remplacer les traditionnelles références à base de multicouches Co/Pt

Topics: Spin transfer torque, Perpendicular magnetic anisotropy, Magnetic tunnel junction, Spintronics, Double barrier, Double barrière, Couple de transfert de spin, Mram, Électronique de spin, Jonction tunnel magnétique, Anisotropie magnétique perpendiculaire, [ PHYS.COND ] Physics [physics]/Condensed Matter [cond-mat], [ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]
Publisher: HAL CCSD
Year: 2015
OAI identifier: oai:HAL:tel-01312194v1
Provided by: Thèses en Ligne

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.