Skip to main content
Article thumbnail
Location of Repository

Effect of disjoining pressure on surface nanobubbles.

By V. Svetovoy, I. Dević, J. Snoeijer and D. Lohse

Abstract

In gas-oversaturated solutions, stable surface nanobubbles can exist thanks to a balance between the Laplace pressure and the gas overpressure, provided the contact line of the bubble is pinned. In this article, we analyze how the disjoining pressure originating from the van der Waals interactions of the liquid and the gas with the surface affects the properties of the surface nanobubbles. From a functional minimization of the Gibbs free energy in the sharp-interface approximation, we find the bubble shape that takes into account the attracting van der Waals potential and gas compressibility effects. Although the bubble shape slightly deviates from the classical one (defined by the Young contact angle), it preserves a nearly spherical-cap shape. We also find that the disjoining pressure restricts the aspect ratio (size/height) of the bubble and derive the maximal possible aspect ratio, which is expressed via the Young angle

Year: 2016
DOI identifier: 10.1021/acs.langmuir.6b01812
OAI identifier: oai:escidoc.org:escidoc:2351550
Provided by: MPG.PuRe
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://hdl.handle.net/11858/00... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.