Optical instrumentation for fluid flow in gas turbines

Abstract

Both a novel shearing interferometer and the first demonstration of particle image velocimetry (PIV) to the stator-rotor gap of a spinning turbine cascade are presented. Each of these techniques are suitable for measuring gas turbine representative flows. The simple interferometric technique has been demonstrated on a compressor representative flow in a 2-D wind tunnel. The interferometer has obvious limitations, as it requires a clear line of sight for the integration of refractive index along an optical path. Despite this, it is a credible alternative to schlieren or shadowgraph in that it provides both qualitative visualisation and a quantitative measurement of refractive index and the variables to which it is dependent without the vibration isolation requirements of beam splitting interferometry. The 2-D PIV measurements have been made in the stator-rotor gap of the MTI high-pressure turbine stage within DERA's Isentropic Light Piston Facility (lLPF). The measurements were made at full engine representative conditions adjacent to a rotor spinning at 8200 rpm. This is a particularly challenging application due to the complex geometry and random and periodic effects generated as the stator wake interacts with the adjacent spinning rotor. The application is further complicated due to the transient nature of the facility. The measurements represent a 2- D, instantaneous, quantitative description of the unsteady flow field and reveal evidence of shocks and wakes. The estimated accuracy after scaling, timing, particle centroid and particle lag errors have been considered is ± 5%. Non-smoothed, non-time averaged measurements are qualitatively compared with a numerical prediction generated using a 2-D unsteady flow solver (prediction supplied by DERA). A very close agreement has been achieved. A novel approach to characterising the third component of velocity from the diffraction rings of a defocusing particle viewed through a single camera has been explored. This 3-D PIV technique has been demonstrated on a nozzle flow but issues concerning the aberrations of the curved test section window of the turbine cascade could not be resolved in time for testing on the facility. Suggestions have been made towards solving this problem. Recommendations are also made towards the eventual goal of revealing a temporally and spatially resolved 3-D velocity distribution of the stator wake impinging on the passing rotor

Similar works

Full text

thumbnail-image

Warwick Research Archives Portal Repository

redirect
Last time updated on 28/06/2012

This paper was published in Warwick Research Archives Portal Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.