Amide proton transfer of carnosine in aqueous solution studied in vitro by WEX and CEST experiments.

Abstract

Amide protons of peptide bonds induce an important chemical exchange saturation transfer (CEST) contrast in vivo. As a simple in vitro model for a peptide amide proton CEST effect, we suggest herein the dipeptide carnosine. We show that the metabolite carnosine creates a CEST effect and we study the properties of the exchange of the amide proton (-NH) of the carnosine peptide bond (NHCPB) in model solutions for a pH range from 6 to 8.3 and a temperature range from T = 5 degrees C to 43 degrees C by means of CEST and water exchange spectroscopy (WEX) experiments on a 3 T whole-body MR tomograph. The dependence of the NHCPB chemical exchange rate k(sw) on pH and temperature T was determined using WEX. For physiological conditions (T = 37 degrees C, pH = 7.10) we obtained k(sw) = (47.07 +/- 7.90)/s. With similar chemical shift and exchange properties to amide protons in vivo, carnosine forms a simple model system for optimization of CEST pulse sequences in vitro. The potential for direct detection of the metabolite carnosine in vivo is discussed

Similar works

Full text

thumbnail-image

MPG.PuRe

redirect
Last time updated on 23/08/2016

This paper was published in MPG.PuRe.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.