Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change

Abstract

Comparison of C-14 (carbon-14) in archived (pre-1963) and contemporary soils taken along an elevation gradient in the Sierra Nevada, California, demonstrates rapid (7 to 65 years) turnover for 50 to 90 percent of carbon in the upper 20 centimeters of soil (A horizon soil carbon). Carbon turnover times increased with elevation (decreasing temperature) along the Sierra transect. This trend was consistent with results from other locations, which indicates that temperature is a dominant control of soil carbon dynamics. When extrapolated to large regions, the observed relation between carbon turnover and temperature suggests that soils should act as significant sources or sinks of atmospheric carbon dioxide in response to global temperature changes

Similar works

Full text

thumbnail-image

MPG.PuRe

redirect
Last time updated on 23/08/2016

This paper was published in MPG.PuRe.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.