A class of dust-like self-similar solutions of the massless Einstein-Vlasov system

Abstract

In this paper the existence of a class of self-similar solutions of the Einstein-Vlasov system is proved. The initial data for these solutions are not smooth, with their particle density being supported in a submanifold of codimension one. They can be thought of as intermediate between smooth solutions of the Einstein-Vlasov system and dust. The motivation for studying them is to obtain insights into possible violation of weak cosmic censorship by solutions of the Einstein-Vlasov system. By assuming a suitable form of the unknowns it is shown that the existence question can be reduced to that of the existence of a certain type of solution of a four-dimensional system of ordinary differential equations depending on two parameters. This solution starts at a particular point P0P_0 and converges to a stationary solution P1P_1 as the independent variable tends to infinity. The existence proof is based on a shooting argument and involves relating the dynamics of solutions of the four-dimensional system to that of solutions of certain two- and three-dimensional systems obtained from it by limiting processes

Similar works

Full text

thumbnail-image

MPG.PuRe

redirect
Last time updated on 23/08/2016

This paper was published in MPG.PuRe.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.