Sequences Characterizing k-Trees

Abstract

A non-decreasing sequence of n integers is the degree sequence of a 1-tree (i.e., an ordinary tree) on n vertices if and only if there are least two 1’s in the sequence, and the sum of the elements is 2(n–1). We generalize this result in the following ways. First, a natural generalization of this statement is a necessary condition for k-trees, and we show that it is not sufficient for any k > 1. Second, we identify non-trivial sufficient conditions for the degree sequences of 2-trees. We also show that these sufficient conditions are almost necessary using bounds on the partition function p(n) and probabilistic methods. Third, we generalize the characterization of degrees of 1-trees in an elegant and counter-intuitive way to yield integer sequences that characterize k-trees, for all k

Similar works

Full text

thumbnail-image

MPG.PuRe

redirect
Last time updated on 23/08/2016

This paper was published in MPG.PuRe.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.