Infection dynamics and virus-induced apoptosis in cell culture-based influenza vaccine production – flow cytometry and mathematical modeling

Abstract

Cell culture-based influenza vaccine manufacturing is of growing importance. Depending on virus strains, differences in infection dynamics, virus-induced apoptosis, cell lysis and virus yields are observed. Comparatively little is known concerning details of virus-host cell interaction on a cellular level and virus spreading in a population of cells in bioreactors. In this study, the infection of MDCK cells with different influenza A virus strains in lab-scale microcarrier culture was investigated by flow cytometry. Together with the infection status of cells, virus-induced apoptosis was monitored. A mathematical model has been formulated to describe changes in the concentration of uninfected and infected adherent cells, dynamics of virus particle release (infectious virions, hemgglutinin content), and the time course of the percentage composition of the cell population. (C) 2009 Elsevier Ltd. All rights reserved. [accessed November 27, 2009

Similar works

Full text

thumbnail-image

MPG.PuRe

redirect
Last time updated on 23/08/2016

This paper was published in MPG.PuRe.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.