Theoretical study on excited-state intermolecular proton transfer reactions of 1H-pyrrolo[3,2-h]quinoline with water and methanol

Abstract

The dynamics of the ultrafast excited-state multiple intermolecular proton transfer (PT) reactions in gas-phase complexes of 1H-pyrrolo[3,2-h]quinoline with water and methanol (PQ(H<sub>2</sub>O)<sub>n</sub> and PQ(MeOH)<sub>n</sub> , where n = 1, 2) is modeled using quantum-chemical simulations. The minimum energy ground-state structures of the complexes are determined. Molecular dynamics simulations in the first excited state are employed to determine reaction mechanisms and the time evolution of the PT processes. Excited-state dynamics results for all complexes reveal synchronous excited-state multiple proton transfer via solvent-assisted mechanisms along an intermolecular hydrogen-bonded network. In particular, excited-state double proton transfer is the most effective, occurring with the highest probability in the PQ(MeOH) cluster. The PT character of the reactions is suggested by nonexistence of crossings between ππ* and πσ* states

Similar works

Full text

thumbnail-image

MPG.PuRe

redirect
Last time updated on 23/08/2016

This paper was published in MPG.PuRe.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.