research article journal article

Mesoporous carbons synthesized by direct carbonization of citrate salts for use as high-performance capacitors

Abstract

A simple one-step synthesis methodology for the fabrication of mesoporous carbons with an excellent performance as supercapacitor electrodes is presented. The procedure is based on the carbonization of non-alkali organic salts such as citrate salts of iron, zinc or calcium. The carbonized products contain numerous inorganic nanoparticles (i.e. Fe, ZnO or CaO) embedded within a carbonaceous matrix. These nanoparticles act as endotemplate, which when removed, leaves a mesoporous network. The resulting carbon samples have a large specific surface area up to ∼1600 m2 g−1 and a porosity made up almost exclusively of mesopores. An appropriate heat-treatment of these materials with melamine allows the synthesis of N-doped carbons which have a high nitrogen content (∼8–9 wt.%), a large specific surface area and retain the mesoporous structure. The mesoporous carbon samples were employed as electrode materials in supercapacitors. They exhibit specific capacitances of 200–240 F g−1 in 1 M H2SO4 and 100–130 F g−1 in EMImTFSI/AN. More importantly, the carbon samples possess a good capacitance retention in both electrolytes (>50% in H2SO4 and >80% in EMImTFSI/AN at 100 A g−1) owing to their mesoporous structure which facilitates the penetration and transportation of ions.This research work was supported by the Spanish Ministerio de Economía y Competitividad, MINECO (MAT2012-31651), and Fondo Europeo de Desarrollo Regional (FEDER). G.A.F. thanks the MINECO for his predoctoral contract and M.S. thanks the Ministerio de Ciencia e Innovación of Spain for her Ramón y Cajal contract.Peer reviewe

Similar works

This paper was published in Digital.CSIC.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: info:eu-repo/semantics/openAccess