Location of Repository

Multi-step-ahead streamflow forecasting using aggregation procedure in hydrothermal operation cheduling

By Manoel Henrique da Nobrega Marinho

Abstract

Resumo: Modelos de redes neurais artificiais treinados com algoritmos de retropropagação do erro foram desenvolvidos para a previsão de vazões médias mensais vários passos à frente. Essas previsões foram utilizadas em políticas de controle em malha aberta para o planejamento da operação energética de sistemas hidrotérmicos de potência. O posto hidrológico da usina hidrelétrica de Furnas foi selecionado para estudo de caso. Dois métodos foram implementados e testados para a previsão de vazões médias mensais vários passos à frente. O primeiro, denominado Método Direto, utiliza uma rede neural específica para prever cada passo à frente. O segundo, denominado Método Agregado, utiliza inicialmente uma rede neural para prever a soma das vazões vários passos à frente, desagregando posteriormente em valores mensais proporcionalmente aos valores médios do histórico de vazões. Os resultados indicaram que embora o Método Agregado tenha obtido pior desempenho que o Método Direto na comparação dos erros de previsão a cada passo, essa abordagem apresentou melhor desempenho quando comparados os erros de previsão da soma das vazões vários passos à frente. Os dois métodos foram então avaliados através da simulação da operação energética utilizando a política de controle em malha aberta. O resultado indicou um desempenho significativamente melhor para o Método Agregado, proporcionando uma maior geração hidrelétrica e um menor custo operacionalAbstract: Not informe

Topics: Previsão de vazões, Previsão do tempo, Hidrologia - Modelos, Redes neurais (Computação), Sistemas de energia eletrica hidrotermica, Streamflow, Forecast, Inflow aggregation, Hydrological modelling
Year: 2014
OAI identifier: oai:agregador.ibict.br.RI_UNICAMP:oai:unicamp.sibi.usp.br:SBURI/12031
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.rcaap.pt/detail.jsp... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.