Skip to main content
Article thumbnail
Location of Repository

Seleção de características de dados utilizando redes neurais artificiais

By Álvaro Henrique Nogueira de Lima

Abstract

As Redes Neurais Artificiais tem se difundido ao longo dos anos e sua utilização vem crescendo devido aos bons resultados encontrados na solução de diversos problemas do mundo real. Porém o elevado grau de complexidade presente nas Redes Neurais Artificiais torna sua computação difícil, um dos fatores que prejudicam o desempenho da rede neural é a presença de variáveis de entrada redundantes que nada acrescentam ao seu processo de aprendizagem tornando assim o treinamento mais difícil e demorado. Os métodos de seleção de características têm por objetivo determinar quais variáveis (características) da entrada são mais relevantes para a determinação da saída ou resposta da rede, isto possibilita a redução do número de entradas da rede. Neste trabalho foram implementados cinco métodos de seleção de características, o método de Garson, Perturb, PaD, Análise de Sensibilidade e Correlação. Foram escolhidos três problemas (Iris, CPU Performance, Resistência do concreto) para o treinamento das redes neurais, após treinadas com o algoritmo backpropagation os métodos foram executados obtendo-se a importância de cada entrada, as entradas menos importantes foram excluídas e as redes retreinadas obtendo-se um novo erro médio quadrático que foi comparado ao original de forma a avaliar o desempenho do método. Para o problema da Iris considerado mais simples todos os métodos obtiveram resultados semelhantes. Já para os problemas mais complexos com a presença de mais variáveis como o da CPU Performance e Resistência do Concreto os métodos Perturb e Correlação apresentaram os piores resultados, o método de Garson obteve um resultado satisfatório e o Pad e Análise de Sensibilidade apresentaram melhores resultados e se destacaram em relação aos demais

Topics: Redes neurais artificiais, Treinamento, Backproagation, Seleção de características, Importância, Variáveis
Year: 2015
OAI identifier: oai:agregador.ibict.br.RI_UFLA:oai:localhost:1/5415
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.rcaap.pt/detail.jsp... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.