Skip to main content
Article thumbnail
Location of Repository

Sunspot numbers: data analysis, predictions and economic impacts

By A. Gkana and L. Zachilas


We analyze the monthly sunspot number (SSN) data from January 1749 to June 2013. We use the Average Mutual Information\ud and the False Nearest Neighbors methods to estimate the suitable embedding parameters. We calculate the\ud correlation dimension to compute the dimension of the system’s attractor. The convergence of the correlation dimension\ud to its true value, the positive largest Lyapunov exponent and the Recurrence Quantitative Analysis results provide\ud evidences that the monthly SSN data exhibit deterministic chaotic behavior. The future prediction of monthly\ud SSN is examined by using a neural network-type core algorithm. We perform ex-post predictions comparing them\ud with the observed SSN values and the predictions published by the Solar Influences Data Analysis Center. It is shown\ud that our technique is a better candidate for the prediction of the maximum monthly SSN value. We perform future\ud predictions trying to forecast the maximum SSN value from July 2013 to June 2014. We show that the present cycle\ud 24 is yet to peak. Finally, the negative economic impacts of maximum solar activity are discussed

Topics: yearly sunspots number; grand solar minimum; Maunder Minimum; solar activity predictions; deterministic chaos, Engineering (General). Civil engineering (General), TA1-2040, Technology (General), T1-995
Publisher: Eastern Macedonia and Thrace Institute of Technology
Year: 2015
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.