We consider a singularly perturbed elliptic problem, of convection-diffusion type, posed on a circular domain. Using polar coordinates, simple upwinding and a piecewise-uniform Shishkin mesh in the radial direction, we construct a numerical method that is monotone, pointwise accurate and parameter-uniform under certain compatibility constraints. Numerical results are presented to illustrate the performance of the numerical method when these constraints are not imposed on the data
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.