Skip to main content
Article thumbnail
Location of Repository

Study of the training effect in exchange bias\ud using the domain state model

By Andreas Biternas


The most common product of the storage industry is the well known hard disk, based\ud on the magnetic recording and reading of data. The research of magnetic materials is\ud enhanced by the establishment of hard disks as a recording media. Given the current\ud trend toward nanostructured materials and complex materials design, the understanding\ud of the origins of magnetic phenomenology at the atomistic level has become necessary.\ud In this thesis, we focus on the aging effects of magnetic materials. The systems that are\ud investigated are bilayer thin films comprised of two materials with different magnetic order.\ud The so called exchange bias systems are comprised of a ferromagnetic layer in contact\ud with an antiferromagetic layer. Exchange bias systems are part of the current read-heads,\ud which utilise the phenomenon of Giant Magnetoresistance discovered by A. Fert and P.\ud Grünberg, who were awarded a Nobel prize in 2007 for this discovery. The most wellknown\ud characteristic of the exchange bias systems is the shift of the hysteresis loop along\ud the horizontal axis. The reduction of this shift with consecutive hysteresis cycles is called\ud the training effect.\ud The current research focused on the dependence of the training effect on various exchange\ud bias system parameters using the well established domain state model. A novel\ud analysis was developed for the study of the antiferromagnet during consecutive hysteresis\ud loops. A special focus was given to the response of training effect on temperature. Several\ud characteristics of the system were varied to investigate the physics of the training effect,\ud such as the antiferromagnetic thickness and dilution with non-magnetic defects. The reversal\ud modes of the ferromagnet were also investigated varying the anisotropies of the system\ud as well the angle of the magnetic field.\ud New characteristics were added to the domain state model increasing the realism of\ud this model. The interface roughness was introduced in the model, as more representative\ud of realistic exchange bias systems. Furthermore, different crystallographic structures such\ud as body-centered cubic and hexagonal-close packed, were investigated as in these structures\ud the coupling between the ferromagnet and the antiferromagnet increases. In these\ud structures, in addition to the interface roughness, the enhance coupling is shown to give\ud rise to complex trends of the exchange bias and the training effect

Publisher: Physics (York)
Year: 2009
OAI identifier:

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.