Past plate and mantle motion from new ages for the Hawaiian-Emperor Seamount Chain

Abstract

Estimates of the relative motion between the Hawaiian and Louisville hotspots have consequences for understanding the role and character of deep Pacific-mantle return flow. The relative motion between these primary hotspots can be inferred by comparing the age records for their seamount trails. Our new 40Ar/39Ar ages for 18 lavas from 10 seamounts along the Hawaiian-Emperor Seamount Chain (HESC) show that volcanism started in the sharp portion of the Hawaiian-Emperor Bend (HEB) at �47.5 Ma and continued for �5 Myr (O’Connor et al., 2013). The slope of the along-track distance from the currently active Hawaiian hotspot plotted versus age is remarkably linear between �57 and 25 Ma in the central �1900 km of the seamount chain, including the HEB. This model predicts an age for the oldest Emperor Seamounts that matches published ages, implying that a linear age-distance relationship might extend back to at least 82 Ma. In contrast, Hawaiian age progression was much faster since at least �15 Ma and possibly as early as �27 Ma. Linear age-distance relations for the Hawaii-Emperor and Louisville seamount chains predict �300 km overall hotspot relative motion between 80 and 47.5 Ma, in broad agreement with numerical models of plumes in a convecting mantle, and paleomagnetic data. We show that a change in hotspot relative motion may also have occurred between �55 Ma and �50 Ma. We interpret this change in hotspot motion as evidence that the HEB reflects a combination of hotspot and plate motion changes driven by the same plate/mantle reorganization. O’Connor et al. (2013), Constraints on past plate and mantle motion from new ages for the Hawaiian-Emperor Seamount Chain, Geochem. Geophys. Geosyst., 14, 4564–4584, doi:10.1002/ggge.2026

Similar works

Full text

thumbnail-image

Electronic Publication Information Center

redirect
Last time updated on 03/08/2016

This paper was published in Electronic Publication Information Center.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.