Enhanced c-Fms/M-CSF Receptor Signaling and Wound-Healing Process in Bone Marrow-Derived Macrophages of Signal-Transducing Adaptor Protein-2 (STAP-2) Deficient Mice
Signal-transducing adaptor protein-2 (STAP-2) is a recently identified adaptor protein as a c-Fms/M-CSF receptor-interacting protein and constitutively expressed in macrophages. In our previous study, we examined the role of STAP-2 in the c-Fms/M-CSF receptor signaling using a murine macrophage tumor cells line, Raw264.7. Overexpression of STAP-2 in Raw264.7 cells markedly suppressed M-CSF-induced activation of extracellular signal regulated kinase and Akt. In addition, Raw264.7 overexpressing STAP-2 affected cell migration in wound-healing process. These results suggest that STAP-2 deficiency influences endogenous c-Fms/M-CSF receptor signaling. Here we show that loss of STAP-2 expression in knockout mouse macrophages results in marked enhancement of the c-Fms/M-CSF receptor signaling and wound-healing process. We therefore propose that STAP-2 acts as an endogenous regulator in normal macrophages functions
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.