Detection and quantification of classical swine fever virus in air samples originating from infected pigs and experimentally produced aerosols

Abstract

During epidemics of classical swine fever (CSF), neighbourhood infections occurred where none of the ‘traditional’ routes of transmission like direct animal contact, swill feeding, transport contact or transmission by people could be identified. A hypothesized route of virus introduction for these herds was airborne transmission. In order to better understand this possible transmission route, we developed a method to detect and quantify classical swine fever virus (CSFV) in air samples using gelatine filters. The air samples were collected from CSFV-infected pigs after experimental aerosolization of the virus. Furthermore, we studied the viability of the virus with time in aerosolized state. Three strains of CSFV were aerosolized in an empty isolator and air samples were taken at different time intervals. The virus remained infective in aerosolized state for at least 30 min with half-life time values ranging from 4.5 to 15 min. During animal experiments, concentrations of 100.3–101.6 TCID50/m3 CSFV were detected in air samples originating from the air of the pig cages and 100.4–104.0 TCID50/m3 from the expired air of infected animals. This is the first study describing the isolation and quantification of CSFV from air samples originating from infected pigs and their cages, supporting previous findings that airborne transmission of CSF is feasible

Similar works

Full text

thumbnail-image

Utrecht University Repository

redirect
Last time updated on 14/06/2016

This paper was published in Utrecht University Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.