Managing Quality of Probabilistic Databases

Abstract

Uncertain or imprecise data are pervasive in applications like location-based services, sensor monitoring, and data collection and integration. For these applications, probabilistic databases can be used to store uncertain data, and querying facilities are provided to yield answers with statistical confidence. Given that a limited amount of resources is available to “clean” the database (e.g., by probing some sensor data values to get their latest values), we address the problem of choosing the set of uncertain objects to be cleaned, in order to achieve the best improvement in the quality of query answers. For this purpose, we present the PWS-quality metric, which is a universal measure that quantifies the ambiguity of query answers under the possible world semantics. We study how PWS-quality can be efficiently evaluated for two major query classes: (1) queries that examine the satisfiability of tuples independent of other tuples (e.g., range queries) and (2) queries that require the knowledge of the relative ranking of the tuples (e.g., MAX queries). We then propose a polynomial-time solution to achieve an optimal improvement in PWS-quality. Other fast heuristics are also examined

Similar works

Full text

thumbnail-image

HKU Scholars Hub

redirect
Last time updated on 01/06/2016

This paper was published in HKU Scholars Hub.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.