The preparation of α-MnO2 nanotubes (M-NT) decorated with platinum nanoparticles (Pt/M-NT) by a simple reduction and mechanical stirring method is presented in this work, which aims to design a highly active catalyst for the Li-O2 battery. The obtained samples were characterized by XRD, SEM, TEM, BET, and XPS techniques. The electrocatalytic performance of the prepared samples was evaluated by tracking the decomposition of Li2O2 during the charging process in a Li-O2 cell using in situ XRD and operando SR-PXD, which gave direct and time resolved information during the whole process. The results indicated that Pt nanoparticles were uniformly dispersed on the surface of M-NT. Even a small amount (1 wt%) of Pt on M-NT did largely enhance the kinetics of the charging process. A cell with 5 wt% Pt/M-NT showed the highest catalytic activity and lowest charging potential. The decomposition of Li2O2 during the charging process in a Li-O2 cell with 5 wt% Pt/M-NT followed a zero-order reaction. This promoting effect from the supported nanocatalyst can be attributed to the high surface area, highly dispersed and uniform Pt deposition, and proper surface state modifications
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.