Enlarged molecules from excited atoms in nanochannels

Abstract

The resonance interaction that takes place in planar nanochannels between pairs of excited-state atoms is explored. We consider interactions in channels of silica, zinc oxide, and gold. The nanosized channels induce a dramatically different interaction from that in free space. Illustrative calculations for two lithium and cesium atoms demonstrate that there is a short-range repulsion followed by long-range attraction. The binding energy is strongest near the surfaces. The size of the enlarged molecule is biggest at the center of the cavity and increases with channel width. Since the interaction is generic, we predict that enlarged molecules are formed in porous structures, and that the molecule size depends on the size of the nanochannels

Similar works

Full text

thumbnail-image

Digitala Vetenskapliga Arkivet - Academic Archive On-line

redirect
Last time updated on 25/05/2016

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.