research articlejournal article

Burning effects on the distribution of organic N compounds in a 15N labelled forest soil

Abstract

Nitrogen distribution was studied, by successive 1M (H1) and 3M HCl (H2) hydrolyses, on a natural soil before (NS) and after 15N labelling (LS) in an incubation chamber and burning (BLS) in a furnace simulating an intense fire (385 ºC, 10 min). The labelling increased the organic-N of H1 (H1-N) by 4.7%, due to the increase in hydrolyzable unidentified-N (HU-N, 66.3%) and amino acids (AA-N, 11.2%), that counterbalanced the reduction of amides (AM-N, 33.2%) and amino sugars (AS-N, 68.0%). After labelling, H2-N decreased by 7.5%, mainly due to the reduction of AA-N (12.2%) and AS-N (14.9%); conversely, ammonium-N (A-N) and non hydrolyzable-N (NH-N) did not vary and total organic-N increased slightly (2.4%). In LS, the 15N labelling decreases as follows: H1-N (with AM-N > AS-N > AA-N . HU-N) > H2-N (with HU-N > AA-N . A-N > AS-N) > NH-N. The added 15N was mainly incorporated in organic forms (92.2%), following the distribution of the endogenous organic-N; nevertheless, the higher proportion of recently incorporated 15N in hydrolyzable fractions, and lower in NH-N, showed that it is more labile than endogenous N. The added 15N undergoes similar, but stronger, transformations and losses due to burning than the native N: (1) 18.1% of endogenous-N and 22.4% of exogenous-N were lost; (2) H1-N, H1-15N, H2- N, H2-15N, AA-N, AA-15N, HU-N and HU-15N decreased by 69.7%, 74.1%, 76.6%, 82.9%, 96.5%, 96.8%, 92.1% and 98.3%, respectively; (3) NH-N, NH-15N, A-N and A-15N increased by 81.0%, 314%, 81.3% and 78.2%, respectively; (4) AM-N increased (51.2%) whereas AM-15N decreased (1.7%). Therefore, soil burning reduces the soil organic N reserves, through N volatilization (especially of labile N), and decreases N bioavailability, through an important net transfer of N from the labile to the recalcitrant pool; jointly, both processes will increase the negative effects of wildfires on the N cycle. In spite of the previous 15N labelling process, LS could be considered as a representative forest soil, which undergoes similar changes during burning than unlabelled soils, leading to a representative burnt labelled soil. Neither in LS nor in BLS the distribution of the added 15N was uniform among the N fractions; nevertheless, as the reference levels of 15N enrichment in the organic N fractions are accurately known, both LS (as control treatment) and BLS will be useful for further studies on the efficiency of several techniques on the post-fire restoration of the soil N distribution.This research was supported by the Comisión Interministerial de Ciencia y Tecnología (CICYT) of Spain through the project number AGF 96-0391.Peer reviewe

Similar works

This paper was published in Digital.CSIC.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: info:eu-repo/semantics/openAccess