A chemists view: Metal oxides with adaptive structures for thermoelectric applications

Abstract

Thermoelectric devices can help to tackle future challenges in the energy sector through the conversion of waste heat directly into usable electric energy. For a wide applicability low-cost materials with reasonable thermoelectric performances and cost-efficient preparation techniques are required. In this context metal oxides are an interesting class of materials because of their inherent high-temperature stability and relative high sustainability. Their thermoelectric performance, however, needs to be improved for wide application. Compounds with adaptive structures are a very interesting class of materials. A slight reduction of early transition metal oxides generates electrons as charge carriers and crystallographic shear planes as structure motif. The crystallographic shear planes lead to a reduction of intrinsic thermal conductivity. At the same time, the electronic transport properties can be tuned by the degree of reduction. So far only a few transition metal oxides with adaptive structures have been investigated with respect to their thermoelectric properties, leaving much room for improvement. This review gives an overview of thermoelectric oxides, highlights the structural aspects of the crystallographic shear planes and the resulting thermoelectric properties

Similar works

Full text

thumbnail-image

Juelich Shared Electronic Resources

redirect
Last time updated on 16/05/2016

This paper was published in Juelich Shared Electronic Resources.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.