Exploring the structure and dynamics of macromolecular complexes by native mass spectrometry


International audienceMass spectrometry (MS) is an effective approach for determining the mass of biomolecules with high accuracy, sensitivity and speed. Over the past 25 years, MS performed under non-denaturing conditions ("native MS") has been successfully exploited to investigate non-covalently associated biomolecules. Here we illustrate native MS applications aimed at studying protein-ligand interactions and structures of biomolecular assemblies, including both soluble and membrane protein complexes. Moreover, we review how the partial dissociation of holo-complexes can be used to determine the stoichiometry of subunits and their topology. We also describe "native top-down MS", an approach based on Fourier Transform MS (FT MS), whereby non-covalent interactions are preserved while covalent bonds are selectively fragmented. Overall, native MS plays an increasingly important role in integrative structural biology, helping researchers to elucidate the three dimensional architecture of intricate macromolecular complexes

Similar works

Full text

oaioai:HAL:hal-02864550v1Last time updated on 9/11/2020

This paper was published in HAL-CEA.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.