research articlereview

Highly antiplasmodial non-natural oxidative products of dioncophylline A: synthesis, absolute configuration, and conformational stability

Abstract

Four new compounds, the monomeric dioncotetralones A (6 a) and B (6 b) and the dimeric compounds jozimine A3 (7) and jozimine A4 (9), were semi-synthesized from the natural product dioncophylline A (4) and its 5'-O-demethylated derivative (5), respectively, under phenol oxidative reaction conditions. Dioncotetralones A (6 a) and B (6 b) possess an unprecedented Z-configured double bond, in contrast to the classic biaryl axis that is present in the precursor dioncophylline A (4), and an additional stereogenic center at the C2' atom was generated due to the dearomatization. The resulting steric repulsion forced the expected planar double bond into a helical distorted conformation. The homocoupling of 5 yielded compounds 7 and 9, the latter of which is the first sp(3) -sp(2) coupled product of a monomeric naphthylisoquinoline with a reduced one and, thus, contains a newly generated stereogenic center. The full stereostructures of 6 a, 6 b, 7, and 9 were successfully elucidated by the interplay of spectroscopic methods (1D/2D NMR and electronic circular-dichroism spectroscopy) in combination with quantum-chemical calculations. In addition, compounds 6 a and 7 exhibited high antiplasmodial activities with excellent half-maximal inhibitory concentration values

Similar works

Full text

thumbnail-image

edoc

redirect
Last time updated on 09/05/2016

This paper was published in edoc.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.