Planar solid-supported membranes based on amphiphilic block copolymers represent promising systems for the artificial creation of structural surfaces. Here we introduce a method for engineering functional planar solid-supported membranes through insertion of active biomolecules. We show that membranes based on poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) (PDMS-b-PMOXA) amphiphilic diblock copolymers, which mimic natural membranes, are suitable for hosting biomolecules. Our strategy allows preparation of large-area, well-ordered polymer bilayers via Langmuir-Blodgett and Langmuir-Schaefer transfers, and insertion of biomolecules by using Bio-Beads. We demonstrate that a model membrane protein, the potassium channel from the bacterium Mesorhizobium loti, remains functional after insertion into the planar solid-supported polymer membrane. This approach can be easily extended to generate a platform of functional solid-supported membranes by insertion of different hydrophobic biomolecules, and employing different types of solid substrates for desired applications
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.