Quantitative modeling of the temperature-dependent internal Quantum Efficiency in InGaN light emitting diodes

Abstract

The temperature dependence of the internal quantum efficiency (IQE) of blue InGaN-based light emitting diodes is analyzed both experimentally and theoretically with a drift-diffusion transport model. A high-performance reference structure and two improved epitaxial designs are compared at different operating temperatures. In contrast to a simple ABC model, the proposed approach allows for quantitative predictions of IQEs including optimizations regarding spatial carrier distributions at room temperature. At elevated temperatures, a moderate increase of the Auger coefficient gives a more precise agreement between experiment and simulations. The results show that the model is suitable to quantitatively predict the IQE for different structures and temperatures

Similar works

This paper was published in University of Regensburg Publication Server.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.