A comparison of high temperature fatigue crack propagation in various sub-solvus heat treated turbine disc alloys

Abstract

The microstructure and fatigue performance of three sub-solvus heat treated nickel based disc superalloys for turbine disc applications are reported. The alloy variants studied are RR1000, N18 and Udimet 720 Low Interstitial (U720Li), with the latter tested both in a standard and large grain variant (LG). Their microstructures are examined in terms of grain and gamma prime size. Fatigue crack growth (FCG) rates for all materials at 650ºC show that RR1000 provides the best performance, followed by U720Li-LG, N18 and U720Li. In general, the failure modes become increasingly intergranular with increasing ?K. Some of the variations in FCG rate between the alloys are due to reduction in grain boundary oxidation processes with increased grain size, but more subtle interplays between grain boundary character, alloy composition and slip character are also importan

Similar works

Full text

thumbnail-image

Southampton (e-Prints Soton)

redirect
Last time updated on 02/07/2012

This paper was published in Southampton (e-Prints Soton).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.