Interfacial phenomena at solid/water interfaces play an important role in a wide range of industrial technologies and biological processes. However, it has been a great challenge to directly probe the molecular-scale behavior of water at solid/water interfaces. Recently, there have been tremendous advancements in frequency modulation atomic force microscopy (FM-AFM), enabling its operation in liquids with atomic resolution. The high spatial and force resolutions of FM-AFM have enabled the visualization of one-dimensional (1D) profiles of the hydration force, two-dimensional (2D) images of hydration layers and three-dimensional (3D) images of the water distribution at solid/water interfaces. Here I present an overview of the recent advances in FM-AFM instrumentation and its applications to the study of solid/water interfaces
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.