Anisotropic smoothing of point sets

Abstract

The use of point sets instead of meshes became more popular during the last years. We present a new method for anisotropic fairing of a point sampled surface using an anisotropic geometric mean curvature flow. The main advantage of our approach is that the evolution removes noise from a point set while it detects and enhances geometric features of the surface such as edges and corners. We derive a shape operator, principal curvature properties of a point set, and an anisotropic Laplacian of the surface. This anisotropic Laplacian reflects curvature properties which can be understood as the point set analogue of Taubin’s curvature-tensor for polyhedral surfaces. We combine these discrete tools with techniques from geometric diffusion and image processing. Several applications demonstrate the efficiency and accuracy of our method

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 22/10/2014

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.