Article thumbnail

Data from: Integrating nonadditive genomic relationship matrices into the study of genetic architecture of complex traits

By Alireza Nazarian and Salvador A. Gezan

Abstract

The study of genetic architecture of complex traits has been dramatically influenced by implementing genome-wide analytical approaches during recent years. Of particular interest are genomic prediction strategies which make use of genomic information for predicting phenotypic responses instead of detecting trait-associated loci. In this work, we present the results of a simulation study to improve our understanding of the statistical properties of estimation of genetic variance components of complex traits, and of additive, dominance, and genetic effects through best linear unbiased prediction methodology. Simulated dense marker information was used to construct genomic additive and dominance matrices, and multiple alternative pedigree- and marker-based models were compared to determine if including a dominance term into the analysis may improve the genetic analysis of complex traits. Our results showed that a model containing a pedigree- or marker-based additive relationship matrix along with a pedigree-based dominance matrix provided the best partitioning of genetic variance into its components, especially when some degree of true dominance effects was expected to exist. Also, we noted that the use of a marker-based additive relationship matrix along with a pedigree-based dominance matrix had the best performance in terms of accuracy of correlations between true and estimated additive, dominance, and genetic effects

Topics: Life sciences, medicine and health care
Year: 2015
DOI identifier: 10.5061/dryad.j5f51
OAI identifier: oai:easy.dans.knaw.nl:easy-dataset:91654
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://easy.dans.knaw.nl/ui/d... (external link)

  • To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

    Suggested articles