The progenitor mass of the Type IIP supernova SN 2004et from late-time spectral modeling

Abstract

SN 2004et is one of the nearest and best-observed Type IIP supernovae, with a progenitor detection as well as good photometric and spectroscopic observational coverage well into the nebular phase. Based on nucleosynthesis from stellar evolution/explosion models we apply spectral modeling to analyze its 140-700 day evolution from ultraviolet to mid-infrared. We find a M_ZAMS= 15 Msun progenitor star (with an oxygen mass of 0.8 Msun) to satisfactorily reproduce [O I] 6300, 6364 {\AA} and other emission lines of carbon, sodium, magnesium, and silicon, while 12 Msun and 19 Msun models under- and overproduce most of these lines, respectively. This result is in fair agreement with the mass derived from the progenitor detection, but in disagreement with hydrodynamical modeling of the early-time light curve. From modeling of the mid-infrared iron-group emission lines, we determine the density of the "Ni-bubble" to rho(t) = 7E-14*(t/100d)^-3 g cm^-3, corresponding to a filling factor of f = 0.15 in the metal core region (V = 1800 km/s). We also confirm that silicate dust, CO, and SiO emission are all present in the spectra

Similar works

Full text

thumbnail-image

Queen's University Belfast Research Portal

redirect
Last time updated on 17/07/2014

This paper was published in Queen's University Belfast Research Portal.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.