Structure and Microstructure Properties of Ball Milled Fe-Zn

Abstract

Nanocrystalline Fe10 %Zn and Fe30 %Zn alloys have been prepared from pure elemental powders by mechanical alloying processing in a high energy planetary ball-mill. Microstructural, structural, and magnetic characterizations of the powders were investigated by X-ray diffraction, and vibrating sample magnometer. The crystallite size reduction to the nanometer scale is accompanied by an increase in the atomic level strain. The reaction between Fe and Zn leads to the formation of a bcc Fe(Zn) solid solution with a lattice parameter close to (0.2912 nm for Fe30 %Zn and 0,2885 nm for Fe10 %Zn) after 5 h of milling. The complete dissolution of the elemental Zn powders in the a-Fe lattice gives rise to the formation of a highly disordered Fe(Zn) solid solution, where a-Fe(Zn) nanograins have a crystallite size of (229,29 Å for Fe10 %Zn (24 h) 30,09 Å for Fe30 %Zn (24 h), on prolonged milling time. The coercivity and magnetization values are 18,90 (Fe10 %Zn)Oe and 26,59 (Fe30 %Zn) emu/g, respectively, after 24 h of milling. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3514

Similar works

Full text

thumbnail-image

Electronic Sumy State University Institutional Repository

redirect
Last time updated on 01/06/2014

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.