Construction of Explicit and Implicit Symmetric TVD Schemes and Their Applications

Abstract

A one-parameter family of second-order explicit and implicit total variation diminishing (TVD) schemes is reformulated so that a simplier and wider group of limiters is included. The resulting scheme can be viewed as a symmetrical algorithm with a variety of numerical dissipation terms that are designed for weak solutions of hyperbolic problems. This is a generalization of recent works of Roe and Davis to a wider class of symmetric schemes other than Lax-Wendroff. The main properties of the present class of schemes are that they can be implicit, and, when steady-state calculations are sought, the numerical solution is independent of the time step. Numerical experiments with two-dimensional unsteady and steady-state airfoil calculations show that the proposed symmetric TVD schemes are quite robust and accurate

Similar works

This paper was published in DigitalCommons@University of Nebraska.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.