conference paper

Predicting Heart Failure Patient Events by Exploiting Saliva and Breath Biomarkers Information

Abstract

The aim of this work is to present a machine learning based method for the prediction of adverse events (mortality and relapses) in patients with heart failure (HF) by exploiting, for the first time, measurements of breath and saliva biomarkers (Tumor Necrosis Factor Alpha, Cortisol and Acetone). Data from 27 patients are used in the study and the prediction of adverse events is achieved with high accuracy (77%) using the Rotation Forest algorithm. As in the near future, biomarkers can be measured at home, together with other physiological data, the accurate prediction of adverse events on the basis of home based measurements can revolutionize HF management.If citation added, please refer to the IEEE DO

Similar works

Full text

thumbnail-image

ZENODO

redirect
Last time updated on 02/08/2018

This paper was published in ZENODO.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.