Synthesis and Characteristics of a Biobased High-T-g Terpolyester of Isosorbide, Ethylene Glycol, and 1,4-Cyclohexane Dimethanol: Effect of Ethylene Glycol as a Chain Linker on Polymerization

Abstract

A solution for overcoming the low reactivity of terephthalic acid and isosorbide (ISB) is proposed that uses 1,4-cyclohexane dimethanol and ethylene glycol. Using the different reactivities, volatilities, and degree of steric hindrances among the three diols, a highly heat-resistive biobased terpolyester (PEICT; glass transition temperature = 93?143 °C) was synthesized with a high degree of polymerization (weight-average molecular weight 65?400; number-average molecular weight 25?400). After esterification, most of the oligomer end groups were found to consist of ISB, which decreases the overall reactivity of transesterification due to its characteristics. However, this end group changed gradually into ethylene units, which accelerated the transesterification and chain growth in the polycondensation process via chain scission at the carbonyl carbon adjacent to the ethylene unit. To substantiate this mechanism, the Fukui function was used to calculate the reactivity difference between monomers. The sequence distribution was analyzed using 13C-nuclear magnetic resonance to elucidate the function of each diol unit in transesterification. Finally, a polycondensation process for the PEICT terpolyester is proposed

Similar works

Full text

thumbnail-image

HANYANG Repository

redirect
Last time updated on 27/07/2018

This paper was published in HANYANG Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.